Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain.

نویسندگان

  • Henrik Ahlenius
  • Violeta Visan
  • Merab Kokaia
  • Olle Lindvall
  • Zaal Kokaia
چکیده

Neurogenesis in the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb, continues throughout life but declines with increasing age. Little is known about how aging affects the intrinsic properties of the neural stem and progenitor cells (NSCs) in SVZ and the functional characteristics of their neuronal progeny. Here, we have compared the properties of NSCs isolated from embryonic lateral ganglionic eminence and adult and aged SVZ in mice using in vivo and in vitro systems, analyzed their gene expression profile, and studied their electrophysiological characteristics before and after differentiation into neurons. We show a loss of NSCs in SVZ from aged mice accompanied by reduced expression of genes for NSC markers, developmentally important transcription factors, and neurogenic factors. However, when isolated in vitro, the NSCs from SVZ of aged animals have capacity for proliferation and multilineage differentiation, including production of functional neurons, similar to that of NSCs in adult mice, albeit with lower efficacy. These properties are of major importance when considering therapeutic applications of neuronal replacement from endogenous NSCs in the injured, aged brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells

Objective(s): Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim...

متن کامل

Dehydroepiandroesteron increased proliferation of neural progenitor cells derived from p19 embryonal carcinoma stem cells.

Introduction: The p19 line of embryonal carcinoma cells develops into neurons, astroglia and fibroblasts after aggregation and exposure to retinoic acid (RA). Dehydroepiandroesteron (DHEA) is a neurosteroid, can increase proliferation of human neural stem cell (NSC) and positively regulated the number of neurons produced. This study was initiated to assess the effect of DHEA on neural progenito...

متن کامل

A Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells

Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...

متن کامل

Scutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells

Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...

متن کامل

O13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats

Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 14  شماره 

صفحات  -

تاریخ انتشار 2009